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Abstract. The fivefold differential cross section (5DCS) of the ionisation by electron impact of atomic
sodium is determined theoretically for its fundamental 3s(2S) state and the excited 3p(2P ) and 3d(2D)
states by a procedure which employs in the transition matrix element of the first order Born approximation,
the correlated double continuum (3C) wave function. This permits us to determine the statistical M-state
population and the orientation and alignment tensors in (e,2e) detection. It is also shown that, the use of
Gamow correlation term, in the independent particle (2C) model, reproduces, only in some situations, the
shape of the angular distribution of the 5DCS obtained by the (3C) wave function.

PACS. 34.80.Dp Atomic excitation and ionization by electron impact

1 Introduction

Atomic sodium has been largely employed in ion-atom col-
lisions [1–3]. These authors have studied the electron ex-
change and excitation in collisions involving excited and
prepared sodium targets. In spite of the fact that, the ma-
nipulation, from the experimental point of view, of sodium
seems to be easier than other alkali, it has been rarely
employed in (e, 2e) ionisation experiments [4], in which
the incident electron is detected after scattering in coin-
cidence with the ejected electron. Zheng et al. [5] have
observed the momentum density profile of excited and
oriented sodium atoms. Recently Dorn et al. [6] give the
orientational dichroism in (e, 2e) reactions with oriented
Na(3p) atoms. These experiments present a large theo-
retical and experimental interest as they permit through
the determination of the five fold differential cross section
(5DCS) the study of the ionisation mechanisms and the
verifications of the different theoretical models proposed
for the description of the double continuum.

Sodium atoms present the particularity of having a
fundamental 3s(2S) state, which has, in contrast to atomic
hydrogen, a distinct energy value from that of 3p(2P ) and
3d(2D) states. From this point of view, it is the only tar-
get which permits the study of the 3s distribution in an
(e, 2e) experiment. More the preparation of the p states is
relatively easier for sodium than for lithium.

Many approximate descriptions, of the electronic dou-
ble continuum resulting from an (e, 2e) reaction, where
the ejected and the scattered electrons are subject to the
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Coulomb field of the residual ion, are nowadays available
(see for example [7]), such as those obtained by generalis-
ing the partial wave expansion to the two electron systems,
or the independent particle model using a product of two
monoelectronic exact Coulomb wave functions, designated
by (2C), in which one can introduce (Peterkop [8]) the
boundary conditions by the means of an effective charge
whose value depends on the dynamics of the problem.

Another type of wave functions constructed by a cor-
related product of two Coulomb functions (3C) obtained
by a Pluvinage [9] type approximation have been, since a
long time, observed to satisfy the exact boundary condi-
tions of the Coulomb double continuum [10,11]. Brauner
et al. [12] have first calculated the different matrix ele-
ments obtained by using this type of wave functions to the
determination of the 5DCS of (e, 2e) ionisation of atomic
hydrogen. The advantages of applying this type of wave
functions was also demonstrated in other situations, like
in the description of the electrons emerging from a photo-
double-ionisation process [13], and a double ionisation by
fast electron impact [14], and to the determination of the
differential cross section of the (e, 2e) ionisation of excited
metastable (2s) hydrogen by Hafid et al. [15] whose results
were compared to those of the second Born calculations
[16].

In this paper, we present the determination of the
triple differential cross section (5DCS) of Na(3s) Na(3p)
and Na(3d) using a model potential for the alkaline core
both in the determination of the bound state wave func-
tion of the target and in the interaction potential of the
incoming electron with the target. We give the M statis-
tical population and the dicroism (Berakdar et al. [17]) of
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Fig. 1. Coordinates used in the text.

the 5DCS by three different descriptions of the final state
to study the influence of the electron-electron correlation.

2 Theory

For given wave vectors ki, k1, k2 (Fig. 1) of the incident,
scattered and the ejected electrons respectively, the five-
fold differential cross section (5DCS) (3DCS in coplanar
detection) of the |nlm〉 state of the alkaline atom will be
given (in atomic units) by:
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with

fnlm = 〈Ψ−f (r1, r2)|V |Ψi(r1, r2, l,m)〉 (4)

and

gnlm = 〈Ψ−f (r2, r1)|V |Ψi(r1, r2, l,m)〉. (5)

Ψ−f and Ψi represent the wave functions describing the
whole system in its final and initial states respectively.
r1 designates the position of the incident electron, r2 the
bound one, and V represents the interaction between the
incident electron and the target.

V =
1

r1
+

1

r12
+ V2 (6)

with r12 = |r1 − r2| and V2, the model potential, which
describes the interaction of the incident electron with the
electrons of the alkaline core given by: (Klapisch [18])

V2 = −β exp(−γr1)− (Z − 1)
exp(−ζr1)

r1
,

with β = 23.51, γ = 2.688, ζ = 7.902 and Z = 11.
(7)

The initial state, which takes into account the incident
and the bound electrons, will be written as the product of
a plane wave and the wave function of the valence electron
of the alkaline atom:

|Ψi〉 =

∣∣∣∣exp(iki · ri)

(2π)3/2
ϕnlm(r2)

〉
, (8)

the wave function ϕmlm(r2) is obtained by an expansion
on Slater basis

ϕnlm = Y ml (θ, φ)

nj∑
j=0

Cjr
νj exp(−αjr) (9)

where αj , νj and nj are empirical parameters, and the
coefficients Cj are determined variationally.

The final state is approximated by a 3C type function
given by:

Ψ−f (r1, r2) = Meik1·r1eik2·r2χ(r1, r2) (10)

with

χ(r1, r2) =1F1(iα1, 1,−i(k1r1 + k1 · r1))

×1F1(iα2, 1,−i(k2r2 + k2 · r2))

×1F1(iα12, 1,−i(k12r12 + k12 · r12)). (11)

The constant M is given by:
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W (ka,kb,kab,p1,p2, αa, αb, αab, λ1, λ2, λ3,η) =

∫
dr

r

dR

R
1F1(−iαa, 1, i(kar + ka · r)) exp(−ika · r− ip1 · r− λ1r)

× 1F1(−iαb, 1, i(kbR+ kb ·R)) exp(−ikb ·R− ip1 ·R− iη ·R− λ2R)

× 1F1(−iαab, 1, i(kab|r + R|+ kab · (r + R))) exp(−λ3|r + R|). (15)
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We define the following basic integral, which is a general-
isation of the one presented in [12]:

See equation (15) above

For the m sublevel of the |nl〉 state their procedure should
be extended by introducing supplementary derivations of
the basic integral in terms of λ2, ηx, ηy and ηz. The orig-
inality of our approach consists in the fact that we could
perform all the derivations analytically using recursion re-
lations developed in [19].

The direct term of the transition matrix element is
given by:

See equation (16) above

The D̂nlm are operators and their applications permits to
generate the spatial and angular part of the corresponding
bound state.

3 Result

We will in what follows present the variation of the five
fold differential cross section (5DCS) of the 3s, 3p and
3d levels of sodium in terms of the ejection angle for an
incidence energy value of 150 eV and an ejection energy
value of 50 eV. We consider two scattering angles, 0.5◦

corresponding to a situation of small momentum trans-
fer, and 35◦ corresponding to an optimal situation in
coplanar geometry giving zero recoil momentum of the
ion krecoil = K− k2 = 0 (Bethe ridge), when the ejec-
tion direction (k2) is parallel to the momentum transfer
K = ki − k1. On each figure we will present three curves,
representing the results obtained by, the Coulomb pro-
jected Born 2C procedure [20] in dotted lines. These are
realised by replacing α12 by zero in equation (16). This
is equivalent to an independent particle description of the
final state double continuum by two Coulomb wave func-
tions. Next, the curves in full line will represent the re-
sults obtained by the 3C correlated two electron contin-
uum wave function (Eq. (10)), which can be considered
in contrast to the preceding, as a first order Born proce-
dure with correct boundary conditions. Finally, the curves

with dashed lines will represent the results noted 2CG ob-
tained by multiplying the 2C results by the Gamow factor

G =
πα12

sinh(πα12)
, which is also present in the 3C wave

function. The comparison between the 3C and the 2CG
results will permit us to find out situations where the final
state correlation introduced by the third hypergeometric
function is important. This will show the reliability of the
calculations [7,21,22] where the final state correlation is
introduced only partially by the Gamow factor.

We consider first, in the Figures 2a and 2b the varia-
tion of the 5DCS of the ionisation of sodium for the sub-
levels 3p0 and 3p±1 respectively in a coplanar geometry
for an scattering angle of 0.5◦. We remark that, the 2C
and 3C results differ in shape and in magnitude, specially
in the forward ejection direction θ2 ≈ 0◦ or 360◦. In fact,
the Gamow term, present in the 3C and 2CG results, hin-
ders the ejection in this direction. On the other hand, the
3C and 2CG results are somewhat similar in shape in the
3p0 case but not in the 3p±1 case in Figure 2b, where the
maxima are translated to the forward direction.

In the case of the scattering angle of 35◦ we present in
Figures 3a and 3b the 5DCS of 3p0 and 3p±1 respectively.
Here the momentum transfer direction around the ejection
angle of 300◦ is an optimal direction, as in this direction
the recoil momentum which is given by krecoil = K− k2.
Here the conclusion that we can do when comparing the
different results is that the Gamow factor introduces a
difference in the magnitude, as it destroys the norm of the
final state wave function. More it does not contribute in
any way in the modification of the general shape of the
curve of 2C. One must add that, the minimum that we
observe around 300◦ in Figure 3a is due to the structure
of the initial state of the atom and not to the final state
correlation as it exists on the three curves.

In the Figures 4a, b, 5a, b and 6a, b we present respec-
tively for the 3s 3p and 3d levels for the scattering angles
0.5◦ and 35◦ by the M statistical distribution given by:

σ
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1
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1∑
m=−1

σ
(5)
nlm. (17)
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Fig. 2. The fivefold differential cross section (5DCS) of the (e,
2e) ionisation of sodium in terms of the ejection angle θ2. The
incident, ejected electron energies and the scattering angle are
respectively 150 eV, 50 eV and 0.5◦: (a) for the 3p0 level and
(b) for the 3p±1 level. The full curve gives the 3C results. The
dotted curve gives the 2C results. The dashed curve gives the
2CG results.

Following the treatment of Berakdar et al. [17], we deter-

mined the tensorial parameters Σ
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ing the p sublevels with:
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We give in Figure 7 their variations in terms of the az-
imuthal angle ϕ2 of the ejected electron direction keeping
ϕ1 = 0◦ with the spherical polar angles θ1 = 35◦ and
θ2 = 60◦.

In Figure 7a and 7c, we present respectively the M -

statistical distribution of the DCS given by Σ
(0)
0 and the

Σ
(2)
0 which represents for excitation, the difference be-

tween the linearly-polarised and the unpolarised light, in-

deed Σ
(2)
0 can be written as:

Σ
(2)
0 =

1
√

2
(Σ

(0)
0 −

√
3σ(5)
p0

).

Fig. 3. Same as Figure 2 but for the scattering angle at 35◦.

Fig. 4. The total 5DCS (Eq. (1)) for (e, 2e) ionisation of
sodium 3s in coplanar geometry for the scattering angle at:
(a) 0.5◦ and (b) 35◦.
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Fig. 5. Same as Figure 4 but for sodium 3p.

Fig. 6. Same as Figure 4 but for sodium 3d.

Fig. 7. The tensorial components [17] in terms of the azimu-
tal angle ϕ2 of the ejected electron. The incident, ejected elec-
tron energies, the scattering and ejection angles are respec-

tively 150 eV, 50 eV 35◦ and 60◦: (a) Σ
(0)
0 , (b) Σ

(1)
0 and (c)

Σ
(2)
0 .

As expected, increasing ϕ2 makes the recoil momentum
krecoil = K− k2 diminish causing the increase in the in-
tensity, which is observed in the three curves. The direc-
tion around ϕ2 = 180◦ is a privileged direction (Bethe
region). The minimum at ϕ2 = 180◦ is due to the mini-
mum observed in Figure 3a and b around 300◦. The 2C
and 2CG curves have more or less the same shape which
defers strongly from that of 3C. This can be explained by
the fact that, as we keep the moduli of k1 and k2 fixed,
k12 increases with ϕ2 which is a parameter of the third
hypergeometric function of the 3C, which is responsible
for the final state correlation.

In Figure 7b, we present the variation of the dicroism
given by:

Σ
(1)
0 =

1
√

2
[σ

(5)
3p1
− σ(5)

3p−1
].

in terms of ϕ2. Now as expected Σ
(1)
0 for ϕ2 = 0◦, 180◦.

Here also the 2CG and 2C results are in complete disagree-
ment specially in the sensitive region around ϕ2 = 150◦

to 210◦.
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4 Conclusion

We have developed a procedure which determines the
5DCS of the (e, 2e) ionisation of the different sublevels
of the n = 3 level of sodium by applying a 3C wave func-
tion. Our results show for an unpolarized electron beam of
150 eV and an ejection energy of 50 eV the particularities
of the variation of the 5DCS in terms of the ejection angle
3s, 3p and 3d sublevels and the limitations of the applica-
tion of the Gamow factor to the 2C calculations, specially
in the determination of the dichroism in the 3p±1.
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versitaire de Recherche Informatique Lorrain) for computa-
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